The post September Token Unlocks Inject Millions Into the Market appeared on BitcoinEthereumNews.com. Crypto projects are unlocking fresh tokens into the ecosystem. AltLayer released nearly $3.5 million worth of tokens in a swoop. More projects plan to release fresh tokens next week. Crypto projects have been pushing fresh supply into circulation this month. According to Tokenomist, an X account that tracks tokenomics, the market saw a steady flow of unlocks between Sept. 15 and 21. Teams, founders, and early backers pushed millions of dollars’ worth of new tokens into the book.  ALT leads the latest token unlock charge Tokenomist reported that substantial amounts of ALT, BLAST, AVAIL, VENOM, and PARTI have flooded the cryptocurrency market over the past five days. Although none of the crypto projects released up to 3% of their circulating supply, the relatively low ratio of tokens released accounted for millions of dollars.  For instance, ALT added 2.38% of its circulating supply to the crypto market, which was worth $3.49 million. Related: AltLayer (ALT) Price Prediction 2024-2030: Will ALT Price Hit $1 Soon? Meanwhile, the Blast Layer-2 solution saw 1.9% of the circulating supply of its native token, BLAST, equivalent to $2.31 million, introduced into the decentralized crypto market ecosystem. That is similar to the other digital assets with minimal ratios introduced into the crypto market that are worth substantial amounts. Token Unlocks Set to Continue Next Week The calendar doesn’t stop there. Tokenomist flagged another round of unlocks between Sept. 22 and 28. AltLayer is lined up again, with another $3.49 million scheduled for Sept. 25. That would push its cumulative unlocked ratio to 42.32% of supply.  New projects join the flow as well. KARRAT will release 1.79% of supply on Sept. 23. XMW will add 1.32% on the same day. Yield Guild Games (YGG) follows with $1.02 million in tokens, equal to 0.91% of supply. Why It Matters… The post September Token Unlocks Inject Millions Into the Market appeared on BitcoinEthereumNews.com. Crypto projects are unlocking fresh tokens into the ecosystem. AltLayer released nearly $3.5 million worth of tokens in a swoop. More projects plan to release fresh tokens next week. Crypto projects have been pushing fresh supply into circulation this month. According to Tokenomist, an X account that tracks tokenomics, the market saw a steady flow of unlocks between Sept. 15 and 21. Teams, founders, and early backers pushed millions of dollars’ worth of new tokens into the book.  ALT leads the latest token unlock charge Tokenomist reported that substantial amounts of ALT, BLAST, AVAIL, VENOM, and PARTI have flooded the cryptocurrency market over the past five days. Although none of the crypto projects released up to 3% of their circulating supply, the relatively low ratio of tokens released accounted for millions of dollars.  For instance, ALT added 2.38% of its circulating supply to the crypto market, which was worth $3.49 million. Related: AltLayer (ALT) Price Prediction 2024-2030: Will ALT Price Hit $1 Soon? Meanwhile, the Blast Layer-2 solution saw 1.9% of the circulating supply of its native token, BLAST, equivalent to $2.31 million, introduced into the decentralized crypto market ecosystem. That is similar to the other digital assets with minimal ratios introduced into the crypto market that are worth substantial amounts. Token Unlocks Set to Continue Next Week The calendar doesn’t stop there. Tokenomist flagged another round of unlocks between Sept. 22 and 28. AltLayer is lined up again, with another $3.49 million scheduled for Sept. 25. That would push its cumulative unlocked ratio to 42.32% of supply.  New projects join the flow as well. KARRAT will release 1.79% of supply on Sept. 23. XMW will add 1.32% on the same day. Yield Guild Games (YGG) follows with $1.02 million in tokens, equal to 0.91% of supply. Why It Matters…

September Token Unlocks Inject Millions Into the Market

  • Crypto projects are unlocking fresh tokens into the ecosystem.
  • AltLayer released nearly $3.5 million worth of tokens in a swoop.
  • More projects plan to release fresh tokens next week.

Crypto projects have been pushing fresh supply into circulation this month. According to Tokenomist, an X account that tracks tokenomics, the market saw a steady flow of unlocks between Sept. 15 and 21. Teams, founders, and early backers pushed millions of dollars’ worth of new tokens into the book. 

ALT leads the latest token unlock charge

Tokenomist reported that substantial amounts of ALT, BLAST, AVAIL, VENOM, and PARTI have flooded the cryptocurrency market over the past five days. Although none of the crypto projects released up to 3% of their circulating supply, the relatively low ratio of tokens released accounted for millions of dollars. 

For instance, ALT added 2.38% of its circulating supply to the crypto market, which was worth $3.49 million.

Related: AltLayer (ALT) Price Prediction 2024-2030: Will ALT Price Hit $1 Soon?

Meanwhile, the Blast Layer-2 solution saw 1.9% of the circulating supply of its native token, BLAST, equivalent to $2.31 million, introduced into the decentralized crypto market ecosystem. That is similar to the other digital assets with minimal ratios introduced into the crypto market that are worth substantial amounts.

Token Unlocks Set to Continue Next Week

The calendar doesn’t stop there. Tokenomist flagged another round of unlocks between Sept. 22 and 28. AltLayer is lined up again, with another $3.49 million scheduled for Sept. 25. That would push its cumulative unlocked ratio to 42.32% of supply. 

New projects join the flow as well. KARRAT will release 1.79% of supply on Sept. 23. XMW will add 1.32% on the same day. Yield Guild Games (YGG) follows with $1.02 million in tokens, equal to 0.91% of supply.

Why It Matters for Traders

The steady unlock pipeline forces traders to think about both sides of the tape. Supply comes in waves, and someone has to take the other side of the trade. 

Ratios look small, but stacked week after week, they build a supply overhang. AltLayer’s back-to-back schedule is the clearest signal, the unlock pressure isn’t easing, it’s compounding.

Related: Token Unlocks This Week: Over $32 Million From BLAST, ALT, VENOM to Hit Market

Disclaimer: The information presented in this article is for informational and educational purposes only. The article does not constitute financial advice or advice of any kind. Coin Edition is not responsible for any losses incurred as a result of the utilization of content, products, or services mentioned. Readers are advised to exercise caution before taking any action related to the company.

Source: https://coinedition.com/token-unlocks-altlayer-blast-ygg-september/

Market Opportunity
LETSTOP Logo
LETSTOP Price(STOP)
$0.01868
$0.01868$0.01868
-6.41%
USD
LETSTOP (STOP) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares Launches JitoSOL Staking ETP on Euronext for European Investors

21Shares launches JitoSOL staking ETP on Euronext, offering European investors regulated access to Solana staking rewards with additional yield opportunities.Read
Share
Coinstats2026/01/30 12:53
Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Digital Asset Infrastructure Firm Talos Raises $45M, Valuation Hits $1.5 Billion

Robinhood, Sony and trading firms back Series B extension as institutional crypto trading platform expands into traditional asset tokenization
Share
Blockhead2026/01/30 13:30
Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Summarize Any Stock’s Earnings Call in Seconds Using FMP API

Turn lengthy earnings call transcripts into one-page insights using the Financial Modeling Prep APIPhoto by Bich Tran Earnings calls are packed with insights. They tell you how a company performed, what management expects in the future, and what analysts are worried about. The challenge is that these transcripts often stretch across dozens of pages, making it tough to separate the key takeaways from the noise. With the right tools, you don’t need to spend hours reading every line. By combining the Financial Modeling Prep (FMP) API with Groq’s lightning-fast LLMs, you can transform any earnings call into a concise summary in seconds. The FMP API provides reliable access to complete transcripts, while Groq handles the heavy lifting of distilling them into clear, actionable highlights. In this article, we’ll build a Python workflow that brings these two together. You’ll see how to fetch transcripts for any stock, prepare the text, and instantly generate a one-page summary. Whether you’re tracking Apple, NVIDIA, or your favorite growth stock, the process works the same — fast, accurate, and ready whenever you are. Fetching Earnings Transcripts with FMP API The first step is to pull the raw transcript data. FMP makes this simple with dedicated endpoints for earnings calls. If you want the latest transcripts across the market, you can use the stable endpoint /stable/earning-call-transcript-latest. For a specific stock, the v3 endpoint lets you request transcripts by symbol, quarter, and year using the pattern: https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={q}&year={y}&apikey=YOUR_API_KEY here’s how you can fetch NVIDIA’s transcript for a given quarter: import requestsAPI_KEY = "your_api_key"symbol = "NVDA"quarter = 2year = 2024url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={API_KEY}"response = requests.get(url)data = response.json()# Inspect the keysprint(data.keys())# Access transcript contentif "content" in data[0]: transcript_text = data[0]["content"] print(transcript_text[:500]) # preview first 500 characters The response typically includes details like the company symbol, quarter, year, and the full transcript text. If you aren’t sure which quarter to query, the “latest transcripts” endpoint is the quickest way to always stay up to date. Cleaning and Preparing Transcript Data Raw transcripts from the API often include long paragraphs, speaker tags, and formatting artifacts. Before sending them to an LLM, it helps to organize the text into a cleaner structure. Most transcripts follow a pattern: prepared remarks from executives first, followed by a Q&A session with analysts. Separating these sections gives better control when prompting the model. In Python, you can parse the transcript and strip out unnecessary characters. A simple way is to split by markers such as “Operator” or “Question-and-Answer.” Once separated, you can create two blocks — Prepared Remarks and Q&A — that will later be summarized independently. This ensures the model handles each section within context and avoids missing important details. Here’s a small example of how you might start preparing the data: import re# Example: using the transcript_text we fetched earliertext = transcript_text# Remove extra spaces and line breaksclean_text = re.sub(r'\s+', ' ', text).strip()# Split sections (this is a heuristic; real-world transcripts vary slightly)if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1)else: prepared, qna = clean_text, ""print("Prepared Remarks Preview:\n", prepared[:500])print("\nQ&A Preview:\n", qna[:500]) With the transcript cleaned and divided, you’re ready to feed it into Groq’s LLM. Chunking may be necessary if the text is very long. A good approach is to break it into segments of a few thousand tokens, summarize each part, and then merge the summaries in a final pass. Summarizing with Groq LLM Now that the transcript is clean and split into Prepared Remarks and Q&A, we’ll use Groq to generate a crisp one-pager. The idea is simple: summarize each section separately (for focus and accuracy), then synthesize a final brief. Prompt design (concise and factual) Use a short, repeatable template that pushes for neutral, investor-ready language: You are an equity research analyst. Summarize the following earnings call sectionfor {symbol} ({quarter} {year}). Be factual and concise.Return:1) TL;DR (3–5 bullets)2) Results vs. guidance (what improved/worsened)3) Forward outlook (specific statements)4) Risks / watch-outs5) Q&A takeaways (if present)Text:<<<{section_text}>>> Python: calling Groq and getting a clean summary Groq provides an OpenAI-compatible API. Set your GROQ_API_KEY and pick a fast, high-quality model (e.g., a Llama-3.1 70B variant). We’ll write a helper to summarize any text block, then run it for both sections and merge. import osimport textwrapimport requestsGROQ_API_KEY = os.environ.get("GROQ_API_KEY") or "your_groq_api_key"GROQ_BASE_URL = "https://api.groq.com/openai/v1" # OpenAI-compatibleMODEL = "llama-3.1-70b" # choose your preferred Groq modeldef call_groq(prompt, temperature=0.2, max_tokens=1200): url = f"{GROQ_BASE_URL}/chat/completions" headers = { "Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json", } payload = { "model": MODEL, "messages": [ {"role": "system", "content": "You are a precise, neutral equity research analyst."}, {"role": "user", "content": prompt}, ], "temperature": temperature, "max_tokens": max_tokens, } r = requests.post(url, headers=headers, json=payload, timeout=60) r.raise_for_status() return r.json()["choices"][0]["message"]["content"].strip()def build_prompt(section_text, symbol, quarter, year): template = """ You are an equity research analyst. Summarize the following earnings call section for {symbol} ({quarter} {year}). Be factual and concise. Return: 1) TL;DR (3–5 bullets) 2) Results vs. guidance (what improved/worsened) 3) Forward outlook (specific statements) 4) Risks / watch-outs 5) Q&A takeaways (if present) Text: <<< {section_text} >>> """ return textwrap.dedent(template).format( symbol=symbol, quarter=quarter, year=year, section_text=section_text )def summarize_section(section_text, symbol="NVDA", quarter="Q2", year="2024"): if not section_text or section_text.strip() == "": return "(No content found for this section.)" prompt = build_prompt(section_text, symbol, quarter, year) return call_groq(prompt)# Example usage with the cleaned splits from Section 3prepared_summary = summarize_section(prepared, symbol="NVDA", quarter="Q2", year="2024")qna_summary = summarize_section(qna, symbol="NVDA", quarter="Q2", year="2024")final_one_pager = f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks — Key Points{prepared_summary}## Q&A Highlights{qna_summary}""".strip()print(final_one_pager[:1200]) # preview Tips that keep quality high: Keep temperature low (≈0.2) for factual tone. If a section is extremely long, chunk at ~5–8k tokens, summarize each chunk with the same prompt, then ask the model to merge chunk summaries into one section summary before producing the final one-pager. If you also fetched headline numbers (EPS/revenue, guidance) earlier, prepend them to the prompt as brief context to help the model anchor on the right outcomes. Building the End-to-End Pipeline At this point, we have all the building blocks: the FMP API to fetch transcripts, a cleaning step to structure the data, and Groq LLM to generate concise summaries. The final step is to connect everything into a single workflow that can take any ticker and return a one-page earnings call summary. The flow looks like this: Input a stock ticker (for example, NVDA). Use FMP to fetch the latest transcript. Clean and split the text into Prepared Remarks and Q&A. Send each section to Groq for summarization. Merge the outputs into a neatly formatted earnings one-pager. Here’s how it comes together in Python: def summarize_earnings_call(symbol, quarter, year, api_key, groq_key): # Step 1: Fetch transcript from FMP url = f"https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?quarter={quarter}&year={year}&apikey={api_key}" resp = requests.get(url) resp.raise_for_status() data = resp.json() if not data or "content" not in data[0]: return f"No transcript found for {symbol} {quarter} {year}" text = data[0]["content"] # Step 2: Clean and split clean_text = re.sub(r'\s+', ' ', text).strip() if "Question-and-Answer" in clean_text: prepared, qna = clean_text.split("Question-and-Answer", 1) else: prepared, qna = clean_text, "" # Step 3: Summarize with Groq prepared_summary = summarize_section(prepared, symbol, quarter, year) qna_summary = summarize_section(qna, symbol, quarter, year) # Step 4: Merge into final one-pager return f"""# {symbol} Earnings One-Pager — {quarter} {year}## Prepared Remarks{prepared_summary}## Q&A Highlights{qna_summary}""".strip()# Example runprint(summarize_earnings_call("NVDA", 2, 2024, API_KEY, GROQ_API_KEY)) With this setup, generating a summary becomes as simple as calling one function with a ticker and date. You can run it inside a notebook, integrate it into a research workflow, or even schedule it to trigger after each new earnings release. Free Stock Market API and Financial Statements API... Conclusion Earnings calls no longer need to feel overwhelming. With the Financial Modeling Prep API, you can instantly access any company’s transcript, and with Groq LLM, you can turn that raw text into a sharp, actionable summary in seconds. This pipeline saves hours of reading and ensures you never miss the key results, guidance, or risks hidden in lengthy remarks. Whether you track tech giants like NVIDIA or smaller growth stocks, the process is the same — fast, reliable, and powered by the flexibility of FMP’s data. Summarize Any Stock’s Earnings Call in Seconds Using FMP API was originally published in Coinmonks on Medium, where people are continuing the conversation by highlighting and responding to this story
Share
Medium2025/09/18 14:40