Quantitatively evaluates O3D-SIM using the Matterport3D dataset and Success Rate metric in the Habitat simulatorQuantitatively evaluates O3D-SIM using the Matterport3D dataset and Success Rate metric in the Habitat simulator

Quantitative Evaluation of O3D-SIM: Success Rate on Matterport3D VLN Tasks

Abstract and 1 Introduction

  1. Related Works

    2.1. Vision-and-Language Navigation

    2.2. Semantic Scene Understanding and Instance Segmentation

    2.3. 3D Scene Reconstruction

  2. Methodology

    3.1. Data Collection

    3.2. Open-set Semantic Information from Images

    3.3. Creating the Open-set 3D Representation

    3.4. Language-Guided Navigation

  3. Experiments

    4.1. Quantitative Evaluation

    4.2. Qualitative Results

  4. Conclusion and Future Work, Disclosure statement, and References

4.1. Quantitative Evaluation

To facilitate the construction of O3D-SIM and its quantitative evaluation, we employ the Matterport3D dataset [36] within the Habitat simulator [37]. Matterport3D, a comprehensive RGB-D dataset, encompasses 10,800 panoramic views derived from 194,400 RGB-D images across 90 large-scale buildings. It offers surface reconstructions, camera poses, and 2D and 3D semantic segmentations — critical components for creating accurate Ground-truth models. Both Matterport3D and Habitat are widely utilized for assessing the navigational abilities of VLN agents in indoor settings, enabling robots to execute navigational tasks dictated by natural language commands in a seamless environment, with performance meticulously documented. To evaluate O3D-SIM, we compiled 5,267 RGB-D frames and their respective pose data from five distinct scenes, applying this dataset across all mapping pipelines included in our assessment. Additionally, we gathered real-world environment data for evaluation purposes, thereby expanding our analysis to encompass six unique scenes.

\ Baseline: We evaluate the performance of the O3D-SIM against the logical baseline used in our previous work, VLMaps with Connected Components, and also evaluate against our approach SI Maps from [1]. The three methods mentioned for comparison are chosen as they try to achieve things similar to our approach.

\ Evaluation Metrics: Like prior approaches [2, 38, 39] in VLN literature, we use the gold standard Success Rate metric, also known as Task Completion metric to measure the success ratio for the navigation task. We choose Success Rate on navigation tasks as they directly quantify the overall approach and indirectly quantify the performance of O3D-SIM in detecting the instances because if the instances along the way are not properly detected, the queries are bound to fail. We compute the Success Rate metric through human and automatic evaluations. For automatic evaluation, we define success if the agent reaches within a threshold distance of the ground truth goal. Here, the agent’s orientation concerning the goal(s) doesn’t matter and might show success even when the agent fails. For example, if there are multiple paintings and the

\ Table 1. O3D-SIM outperforms the baseline methods from [1] by significantly large margins on the Success Rate metric. It also shows an improvement from our previous approach, i.e., SI-Maps. The best results are highlighted in bold. For this evaluation, the agent executes a set of open-set and closed-set queries in 5 different scenes from Matterport3D and 1 real word environment.

\ agent is asked to point to a particular painting at the end of a query, the agent may reach with a close distance of the desired painting but end up looking at something undesired. Hence, we also use human evaluation to verify if the agent ends up in a desired position according to the query. Human Verification takes in votes from the three people and decides, based on these votes, the success of a task.

\ Results: We present the results of the evaluation metric Success Rate in Table 1. In our experimentation, we observe a remarkable improvement in performance compared to the other approaches we have shown in our paper, especially against the baselines from [1]. O3D-SIM performs better than VLMaps with CC due to its ability to identify instances robustly. SI Maps and O3D-SIM perform better than the baselines due to their ability to separate instances. However, O3D-SIM has the edge over SI Maps due to its open set and 3D nature, allowing it to understand the surroundings better.

\

:::info Authors:

(1) Laksh Nanwani, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(2) Kumaraditya Gupta, International Institute of Information Technology, Hyderabad, India;

(3) Aditya Mathur, International Institute of Information Technology, Hyderabad, India; this author contributed equally to this work;

(4) Swayam Agrawal, International Institute of Information Technology, Hyderabad, India;

(5) A.H. Abdul Hafez, Hasan Kalyoncu University, Sahinbey, Gaziantep, Turkey;

(6) K. Madhava Krishna, International Institute of Information Technology, Hyderabad, India.

:::


:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sharealike 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

The post Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment? appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 17:39 Is dogecoin really fading? As traders hunt the best crypto to buy now and weigh 2025 picks, Dogecoin (DOGE) still owns the meme coin spotlight, yet upside looks capped, today’s Dogecoin price prediction says as much. Attention is shifting to projects that blend culture with real on-chain tools. Buyers searching “best crypto to buy now” want shipped products, audits, and transparent tokenomics. That frames the true matchup: dogecoin vs. Pepeto. Enter Pepeto (PEPETO), an Ethereum-based memecoin with working rails: PepetoSwap, a zero-fee DEX, plus Pepeto Bridge for smooth cross-chain moves. By fusing story with tools people can use now, and speaking directly to crypto presale 2025 demand, Pepeto puts utility, clarity, and distribution in front. In a market where legacy meme coin leaders risk drifting on sentiment, Pepeto’s execution gives it a real seat in the “best crypto to buy now” debate. First, a quick look at why dogecoin may be losing altitude. Dogecoin Price Prediction: Is Doge Really Fading? Remember when dogecoin made crypto feel simple? In 2013, DOGE turned a meme into money and a loose forum into a movement. A decade on, the nonstop momentum has cooled; the backdrop is different, and the market is far more selective. With DOGE circling ~$0.268, the tape reads bearish-to-neutral for the next few weeks: hold the $0.26 shelf on daily closes and expect choppy range-trading toward $0.29–$0.30 where rallies keep stalling; lose $0.26 decisively and momentum often bleeds into $0.245 with risk of a deeper probe toward $0.22–$0.21; reclaim $0.30 on a clean daily close and the downside bias is likely neutralized, opening room for a squeeze into the low-$0.30s. Source: CoinMarketcap / TradingView Beyond the dogecoin price prediction, DOGE still centers on payments and lacks native smart contracts; ZK-proof verification is proposed,…
Share
BitcoinEthereumNews2025/09/18 00:14
ServicePower Closes Transformative Year with AI-Driven Growth and Market Expansion

ServicePower Closes Transformative Year with AI-Driven Growth and Market Expansion

Double-digit growth, 50% team expansion, and accelerated innovation define 2025 momentum MCLEAN, Va., Dec. 18, 2025 /PRNewswire/ — ServicePower, a leading provider
Share
AI Journal2025/12/18 23:32
Franklin Templeton CEO Dismisses 50bps Rate Cut Ahead FOMC

Franklin Templeton CEO Dismisses 50bps Rate Cut Ahead FOMC

The post Franklin Templeton CEO Dismisses 50bps Rate Cut Ahead FOMC appeared on BitcoinEthereumNews.com. Franklin Templeton CEO Jenny Johnson has weighed in on whether the Federal Reserve should make a 25 basis points (bps) Fed rate cut or 50 bps cut. This comes ahead of the Fed decision today at today’s FOMC meeting, with the market pricing in a 25 bps cut. Bitcoin and the broader crypto market are currently trading flat ahead of the rate cut decision. Franklin Templeton CEO Weighs In On Potential FOMC Decision In a CNBC interview, Jenny Johnson said that she expects the Fed to make a 25 bps cut today instead of a 50 bps cut. She acknowledged the jobs data, which suggested that the labor market is weakening. However, she noted that this data is backward-looking, indicating that it doesn’t show the current state of the economy. She alluded to the wage growth, which she remarked is an indication of a robust labor market. She added that retail sales are up and that consumers are still spending, despite inflation being sticky at 3%, which makes a case for why the FOMC should opt against a 50-basis-point Fed rate cut. In line with this, the Franklin Templeton CEO said that she would go with a 25 bps rate cut if she were Jerome Powell. She remarked that the Fed still has the October and December FOMC meetings to make further cuts if the incoming data warrants it. Johnson also asserted that the data show a robust economy. However, she noted that there can’t be an argument for no Fed rate cut since Powell already signaled at Jackson Hole that they were likely to lower interest rates at this meeting due to concerns over a weakening labor market. Notably, her comment comes as experts argue for both sides on why the Fed should make a 25 bps cut or…
Share
BitcoinEthereumNews2025/09/18 00:36