The workflow of the E2E-DEcomp algorithm at inference is shown in Fig. 1, and the structure of E2EDEcomp algorithm for inference is reported in Table 1. In Fig. 2 it is shown the qualitative comparison on a test material image of the adipose tissue using filtered back projection (FBP) and E2 E-DE Comp. Infig. 3 is is reported the PSNR error for a set of 10 testing images for the 2 material decomposition.The workflow of the E2E-DEcomp algorithm at inference is shown in Fig. 1, and the structure of E2EDEcomp algorithm for inference is reported in Table 1. In Fig. 2 it is shown the qualitative comparison on a test material image of the adipose tissue using filtered back projection (FBP) and E2 E-DE Comp. Infig. 3 is is reported the PSNR error for a set of 10 testing images for the 2 material decomposition.

End-to-End Deep Learning Improves CT Material Decomposition

2025/10/01 20:00

Abstract and 1 Introduction

  1. Dual-Energy CT Forward Model
  2. [Model-based Optimization Problem]()
  3. End-to-End Model-based Deep Learning for Material Decomposition (E2E-Decomp)
  4. Numerical Results
  5. Conclusion
  6. Compliance with Ethical Standards and References

4 End-to-End Model-based Deep Learning for Material Decomposition (E2E-Decomp)

\

\

\

\ The workflow of the E2E-DEcomp algorithm at inference is shown in Fig. 1, and the structure of the E2EDEcomp algorithm for inference is reported in Table 1.

\

5 Numerical Results

\ In order to reduce the number of learnable parameters we utilise the same architecture for the denoising module D at each iteration k with shared parameters ρ. In Fig. 2 it is shown the qualitative comparison on a test material image of the adipose tissue using filtered back projection (FBP) and E2E-DEcomp while in Fig. 3 is is reported the PSNR error for a set of 10 testing images for the 2 material decomposition.

\ Figure 2: Qualitative comparison between the material decomposition for adipose using E2E-DEcomp and FBP using different number of angular projections.

\

\ It is worth noting that the improvement in the decomposition accuracy are consistent, around 5 dB, across different levels of dose, i.e. from sparse views to higher number of projections. We have also compared the E2E-DEcomp framework with the FBP ConvNet method Jin et al. [2017] and Fig. 4 shows how E2E-DEcomp can achieve a faster convergence in training using fewer epochs.

6 Conclusion

This work proposed a direct method for DECT material decomposition using a model-based optimization able to decouple the learning in the measurement and image domain. Numerical results show the effectiveness

\ Figure 4: Comparison of the PSNR training error between the FBP ConvNet and the E2E-DEcomp algorithms.

\ of the proposed E2E-DEcomp compared to other supervised approaches since it has fast convergence and excellent performance on low-dose DECT which can lead to further study with clinical dataset.

\

7 Compliance with Ethical Standards

This is a numerical simulation study for which no ethical approval was required.

References

Hemant K Aggarwal, Merry P Mani, and Mathews Jacob. Modl: Model-based deep learning architecture for inverse problems. IEEE transactions on medical imaging, 38(2):394–405, 2018.

\ Robert E Alvarez and Albert Macovski. Energy-selective reconstructions in x-ray computerised tomography. Physics in Medicine & Biology, 21(5):733, 1976.

\ Caifang Cai, Thomas Rodet, Samuel Legoupil, and Ali Mohammad-Djafari. A full-spectral bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography. Medical physics, 40(11):111916, 2013.

\ A. Eguizabal, O. Öktem, and M. Persson. A deep learning one-step solution to material image reconstruction in photon counting spectral CT. In Wei Zhao and Lifeng Yu, editors, Medical Imaging 2022: Physics of Medical Imaging, volume 12031, page 120310Y. International Society for Optics and Photonics, 2022. doi:10.1117/12.2612426.

\ W. Fang, D. Wu, K. Kim, M.K. Kalra, R. Singh, L. Li, and Q. Li. Iterative material decomposition for spectral CT using self-supervised Noise2Noise prior. Phys Med Biol, 66(15):155013, July 2021. doi:10.1088/1361- 6560/ac0afd.

\ Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional neural network for inverse problems in imaging. IEEE transactions on image processing, 26(9):4509–4522, 2017.

\ Thorsten RC Johnson, Bernhard Krauss, Martin Sedlmair, Michael Grasruck, Herbert Bruder, Dominik Morhard, Christian Fink, Sabine Weckbach, Miriam Lenhard, Bernhard Schmidt, et al. Material differentiation by dual energy ct: initial experience. European radiology, 17:1510–1517, 2007.

\ Yong Long and Jeffrey A Fessler. Multi-material decomposition using statistical image reconstruction for spectral ct. IEEE transactions on medical imaging, 33(8):1614–1626, 2014.

\ Clemens Maaß, Matthias Baer, and Marc Kachelrieß. Image-based dual energy ct using optimized precorrection functions: A practical new approach of material decomposition in image domain. Medical physics, 36(8): 3818–3829, 2009.

\ Korbinian Mechlem, Thorsten Sellerer, Sebastian Ehn, Daniela Münzel, Eva Braig, Julia Herzen, Peter B Noël, and Franz Pfeiffer. Spectral angiography material decomposition using an empirical forward model and a dictionary-based regularization. IEEE transactions on medical imaging, 37(10):2298–2309, 2018.

\ Paulo RS Mendonça, Peter Lamb, and Dushyant V Sahani. A flexible method for multi-material decomposition of dual-energy ct images. IEEE transactions on medical imaging, 33(1):99–116, 2013.

\ Rohan Nadkarni, Alex Allphin, Darin P Clark, and Cristian T Badea. Material decomposition from photoncounting ct using a convolutional neural network and energy-integrating ct training labels. Physics in Medicine & Biology, 67(15):155003, 2022.

\ John L Nazareth. Conjugate gradient method. Wiley Interdisciplinary Reviews: Computational Statistics, 1(3): 348–353, 2009.

\ A. Perelli and M.S. Andersen. Regularization by denoising sub-sampled newton method for spectral CT multi-material decomposition. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2200):20200191, 2021. doi:10.1098/rsta.2020.0191.

\ Zaifeng Shi, Huilong Li, Qingjie Cao, Zhongqi Wang, and Ming Cheng. A material decomposition method for dual-energy ct via dual interactive wasserstein generative adversarial networks. Medical Physics, 48(6): 2891–2905, 2021.

\ Emil Y Sidky and Xiaochuan Pan. Report on the AAPM deep-learning spectral CT grand challenge. Medical Physics, 2023.

\ Wim Van Aarle, Willem Jan Palenstijn, Jeroen Cant, Eline Janssens, Folkert Bleichrodt, Andrei Dabravolski, Jan De Beenhouwer, K Joost Batenburg, and Jan Sijbers. Fast and flexible x-ray tomography using the astra toolbox. Optics express, 24(22):25129–25147, 2016.

\ Ruoqiao Zhang, Jean-Baptiste Thibault, Charles A Bouman, Ken D Sauer, and Jiang Hsieh. Model-based iterative reconstruction for dual-energy x-ray ct using a joint quadratic likelihood model. IEEE transactions on medical imaging, 33(1):117–134, 2013.

\

:::info Authors:

(1) Jiandong Wang, Shenzhen Xilaiheng Medical Electronics, (HORRON), China and Centre for Medical Engineering and Technology, University of Dundee, DD1 4HN, UK (jack@horron.com);

(2) Alessandro Perelli, Centre for Medical Engineering and Technology, University of Dundee, DD1 4HN, UK (aperelli001@dundee.ac.uk).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Fetch has sued Ocean and its founders, accusing them of undermining DAO governance by selling 263 million FET tokens without authorization.

Fetch has sued Ocean and its founders, accusing them of undermining DAO governance by selling 263 million FET tokens without authorization.

PANews reported on November 8th that, according to CryptoSlate, Fetch and three token holders have filed a class-action lawsuit in the Southern District of New York, accusing Ocean Protocol and its founders of misleading the community and causing misunderstandings about the autonomy of OceanDAO. The lawsuit, case number 1:25-cv-9210, was filed on November 4, 2025. The defendants include Ocean Protocol Foundation Ltd., Ocean Expeditions Ltd., OceanDAO, and Ocean's co-founders Bruce Pon, Trent McConaghy, and Christina Pon. The plaintiff alleges that Ocean falsely stated that hundreds of millions of OCEAN "community" tokens would be reserved for DAO rewards, but in reality, after joining the ASI consortium, it converted and sold these tokens, thereby depressing the value of FET and undermining the governance model claimed by the DAO. The lawsuit claims that over 661 million OCEAN were converted into approximately 286.46 million FET, and subsequently approximately 263 million FET were released into the market, equivalent to more than 10% of the then-circulating supply, causing downward pressure on the price of FET during and after Ocean's withdrawal from the market. The document states that Ocean transferred OceanDAO assets to the Cayman Islands entity Ocean Expeditions in late June, began converting OCEAN to FET in early July, liquidated most of the resulting FET on a centralized trading venue, and withdrew from the ASI consortium in October.
Share
PANews2025/11/08 09:28
The Elite Advisory Board Raising the Bar for Crypto Credibility!

The Elite Advisory Board Raising the Bar for Crypto Credibility!

The post The Elite Advisory Board Raising the Bar for Crypto Credibility! appeared on BitcoinEthereumNews.com. Crypto Presales Explore how BlockDAG’s world-class advisory board, led by Dr. Maurice Herlihy, turned academic excellence into real blockchain innovation! When most crypto projects struggle to prove their credibility, BlockDAG went a different route; it built one. Instead of relying on hype or flashy marketing, it assembled a board of advisors whose resumes could power an entire university department. This group doesn’t just lend prestige; it validates the technology behind BlockDAG’s hybrid Proof-of-Work and Directed Acyclic Graph system. Among them is Dr. Maurice Herlihy, one of computer science’s most decorated minds and a true authority in distributed computing. The strategy here is simple yet brilliant: combine practical blockchain expertise with academic strength to create a foundation built on real innovation and proven knowledge, not speculation. The Vision: Build More Than a Team BlockDAG understood early that innovation needs more than developers; it needs thinkers who have shaped the field itself. The leadership, headed by CEO Antony Turner, chose to build what they call a “Genius Bar” of blockchain intellect. This idea came from the realization that credibility in crypto doesn’t come from influencers or endorsements; it comes from having the right people asking the right questions. Turner’s background in fintech and Swiss regulation gave him the insight to merge institutional discipline with crypto creativity. This approach reshaped how investors perceive early-stage blockchain ventures. Instead of anonymous teams, BlockDAG offered transparency, leadership, and a network of experts who have not only theorized innovation but also implemented it at scale. That’s why it has become the best-performing crypto today, combining logic, structure, and execution. Dr. Maurice Herlihy: The Academic Powerhouse Every innovation needs an anchor, someone who ensures the foundation is scientifically sound. For BlockDAG, that anchor is Dr. Maurice Herlihy. As a professor at Brown University and winner of the Gödel…
Share
BitcoinEthereumNews2025/11/08 09:04