This conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic techniqueThis conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic technique

Holography Light: Justification and Future Theory

2025/11/04 09:43
  • Prologue
  • Diagrammatic(s) Rules
  • Straight-forward Eikonal
  • Legacy Bosonization
  • Wonton Holography
  • Holographic Propagators
  • Strange Cuprates
  • Stranger Things
  • Epilogue

Epilogue

\ Importantly, even a perfect match between the holographic and some other (believed to be comparatively better established) results would not provide a firm justification for the holographic technique itself. Indeed, any results obtained under the assumption of a purely classical (non-dynamical) background metric - which assumption is overwhelmingly common to the practical applications of the holographic approach - would only pertain to its ’light’ version, as opposed to the full-fledged one. As to the possible desk-top simulations of such a ’holography light’ scenario, those have been proposed for several platforms, including flexible graphene flakes [55] and hyperbolic metamaterials [56].

\ Projecting into the future, it seems quite likely that the ultimate theory of correlated quantum matter will eventually assume a form akin to quantum hydrodynamics formulated in terms of the moments of quantum distribution function [57]. Such a collective-field description of the bulk (a.k.a. ’phase’) space with the d-dimensional momentum providing for the extra dimensions could be equally well called either bosonization, or holography. Regardless of the name, though, taking a full advantage of this formally exact approach might turn out to be difficult, especially in the physically relevant cases of N ∼ 1 and moderate coupling strengths.

\ Nevertheless, there still seems to be no good reason neither for this theory to conform to anything as specific and convenient as the EMD Lagrangian (22), nor for the corresponding holographic dictionary to be copy-pasted ’ad verbatim’ from string/HEP theory.

\ One would hope that exposing the existing controversy over this and related issues might be helpful to authors of the future original (of course) studies on the topic - as well as their knowledgeable and unbiased (of course) referees.

\ This note was compiled, in part, while staying at and being supported by the Aspen Center for Physics under the NSF Grant PHY-1607611.

\


\

  1. T. Holstein, R. E. Norton and P. Pincus, Phys. Rev. B 8, 2649 (1973); M. Y. Reizer, Phys.Rev.B39, 1609 (1989); ibid, B40, 11571 (1989).

    \

  2. C.J.Pethick, G.Baym, and H.Monien, Nucl.Phys.A498, 313c (1989).

    \

  3. P. A. Lee, Phys. Rev. Lett. 63, 680 (1989); L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989); P.A. Lee and N. Nagaosa, ; Phys. Rev. Lett. 64, 2450 (1990); Phys. Rev. B46, 5621 (1992); J.Gan and E. Wong, Phys. Rev. Lett. 71, 4226 (1993); C. Nayak and F. Wilczek, Nucl. Phys. B 430, 534 (1994); S.Chakravarty et al., Phys. Rev. Lett. 75, 3584 (1995).

    \

  4. C. Castellani and C. Di Castro, Physica C 235-240, 99 (1994); C. Castellani et al., Phys. Rev. Lett. 72, 316 (1994); W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91, 066402 (2003); L. Dell’Anna and W. Metzner, Phys. Rev. B 73, 045127 (2006); Phys. Rev. Lett. 98, 136402 (2007).

    \

  5. B. I. Halperin, P. A. Lee and N. Read, Phys. Rev. B 47, 7312 (1993)

    \

  6. A. Chubukov, C. Pepin and J. Rech, Phys. Rev. Lett. 92, 147003 (2004); Phys. Rev. B 74, 195126 (2006); A. V. Chubukov, Phys. Rev. B71, 245123 (2005);

    \

  7. A. V. Chubukov, D. V. Khveshchenko, Phys. Rev. Lett. v.97 p.226403 (2006), cond-mat/0604376.

    \

  8. T. A. Sedrakyan and A. V. Chubukov, Phys. Rev. B 79, 115129 (2009), arXiv:0901.1459.

    \

  9. S.-S. Lee, Phys. Rev. B 78, 085129 (2008), Phys. Rev. D 79, 086006 (2009); 2009. Phys. Rev. B 80:165102; Metlitski M, Sachdev S. 2010. Phys. Rev. B 82:075127; 2010. Phys. Rev. B 82:075128.

    \

  10. D. F. Mross et al, Phys. Rev. B 82 (2010) 045121; arXiv:1003.0894; Raghu S, Torroba G, Wang H. 2015. Phys. Rev. B 92:205104 Fitzpatrick A.L. et al, 2015. Phys. Rev. B92:045118 A. Eberlein, I. Mandal, S. Sachdev, Phys. Rev. B 94, 045133 (2016), arXiv:1605.00657.

    \

  11. B.L. Altshuler and L.B. Ioffe, Phys. Rev. Lett. 69, 2979 (1992); E.Altshuler et al, arXiv:cond-mat/9404071; A. Mirlin, E. Altshuler, P. Woelfle, Ann. Physik 5 (1996) 281; I.V. Gornyi, A. Mirlin, Phys. Rev. E 65 (2002) 025202; D. Taras-Semchuk, K. B. Efetov, Phys. Rev. B 64, 115301 (2001).

    \

  12. D. V. Khveshchenko and S. V. Meshkov, Phys. Rev. B 47, 12051 (1993); D. V. Khveshchenko, Phys. Rev. Lett. 77, 1817 (1996).

    \

  13. P.C.E.Stamp, Phys.Rev.Lett.68, 2180 (1992); J.Phys.(France) 3, 625 (1993).

    \

  14. D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. Lett. 71, 2118 (1993); Phys. Rev. B 49, 5227 (1994);

    \

  15. M. J. Lawler et al, Phys. Rev. B 73, 085101 (2006); cond-mat/0508747; M. J. Lawler, E. Fradkin, Phys. Rev. B 75, 033304 (2007); cond-mat/0605203.

    \

  16. P.S¨aterskog, B. Meszena, and K. Schalm, Phys. Rev. B 96, 155125 (2017), arXiv:1612.05326; P.S¨aterskog, SciPost Phys. 4, 015 (2018), arXiv:1711.04338.

    \

  17. Tomer Ravid, Tom Banks, arxiv.org/abs/2208.01183.

    \

  18. L. B. Ioffe, D. Lidsky, and B. L. Altshuler, Phys. Rev. Lett. 73, 472 (1994); B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50, 14048 (1994); ibid B52, 5563 (1995); ibid B53, 415 (1996); B.L.Altshuler et al, ibid B52, 4607 (1995).

    \

  19. A. Luther, Phys. Rev. B 19, 320 (1979). F. D. M. Haldane, Helv. Phys. Acta. 65, 152 (1992); A. Houghton and J. B. Marston, Phys. Rev. B 48, 7790 (1993); A. Houghton et al., ibid. 50, 1351 (1994); J. Phys. 6, 4909 (1994); H.-J. Kwon et al., Phys. Rev. Lett. 73, 284 (1994); Phys. Rev. B 52, 8002 (1995); A. H. Castro Neto and E. Fradkin, Phys. Rev. Lett. 72, 1393 (1994); Phys. Rev. B 49, 10877 (1994); ibid. 51,4048 (1995); P. Kopietz et al., Phys. Rev. B 52, 10877 (1995); A. Houghton, H. J. Kwon, and J. B. Marston, Adv. Phys. 49, 141 (2000). J. Nilsson and A. H. Castro Neto, Phys. Rev. B 72, 195104 (2005).

    \

  20. D. V. Khveshchenko, R. Hlubina, and T. M. Rice, Phys. Rev. B 48, 10766 (1993).

    \

  21. D. V. Khveshchenko, Phys. Rev. B 49, 16893 (1994); ibid B 52, 4833 (1995).L.V. Delacretaz et al, Phys. Rev. Research 4, 033131 (2022), arXiv:2203.05004.

    \

  22. W. Metzner,C.Castellani, C, Di Castro, Advances in Physics, 47, 317 (1998).P. Kopietz and G. E. Castilla, Phys. Rev. Lett. 76, 4777 (1996); ibid 78, 314 (1997).K. B. Efetov, C. Pepin, H. Meier, Phys. Rev. Lett. 103,186403 (2009); Phys. Rev. B 82, 235120 (2010).

    \

  23. S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); C. P. Herzog, J.Phys. A42 343001 (2009); J. McGreevy, Adv. High Energy Phys. 2010, 723105 (2010); J. Polchinski, arXiv:1010.6134; J. McGreevy, Adv.High Energy Phys. 2010, 723105 (2010); S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); S.Sachdev, Annual Review of Cond. Matt. Phys.3,9 (2012); J. Zaanen et al, ’Holographic Duality in Condensed Matter Physics’, Cambridge University Press, 2015; M. Ammon and J. Erdmenger, ’Gauge/Gravity Duality’, Cambridge University Press, 2015; S.A. Hartnoll, A.Lucas, and S. Sachdev, ’Holographic Quantum Matter’, MIT Press, 2018; J. Zaanen,arXiv:2110.00961.S. Kachru, X. Liu and M. Mulligan, Phys. Rev. D 78, 106005 (2008); S. A. Hartnoll and A. Tavanfar, Phys. Rev. D 83, 046003 (2011); S. A. Hartnoll, D. M. Hofman, and D. Vegh, arXiv:1105.3197; S. A. Hartnoll et al, JHEP 1004, 120 (2010); V. G. M. Puletti et al, JHEP 1101, 117 (2011); M. Edalati, R. G. Leigh and P. W. Phillips, Phys. Rev. Lett. 106, 091602 (2011); M. Edalati et al, Phys. Rev. D 83, 046012 (2011).

    \

  24. S. S. Lee, Phys. Rev. D 79, 086006 (2009); H. Liu, J. McGreevy and D. Vegh, arXiv:0903.2477; M. Cubrovic, J. Zaanen and K. Schalm, Science 325, 439 (2009), arXiv:0904.1993; arXiv:1012.5681; T. Faulkner et al,arXiv:0907.2694,1003.1728,1101.0597,1306.6396; N. Iizuka et al, arXiv:1105.1162; D. Guarrera and J. McGreevy, arXiv:1102.3908; K. Jensen et al, arXiv:1105.1772; L. Huijse, S. Sachdev, arXiv:1104.5022; L.Huijse, S.Sachdev, B.Swingle,arXiv:1112.0573; F.Herˇcek, V. Gecin, M. Cubrovi´c, 2208.05920. ˇ 29 C.Charmousis et al, JHEP 1011, 151 (2010); E

    \

  25. C.Charmousis et al, JHEP 1011, 151 (2010); E. Perlmutter, JHEP 06 28 2012Xi Dong et al, JHEP 1206 041, 2012, arXiv:1201.1905; B.S.Kim, JHEP 1206 (2012) 116, arXiv:1202.6062.

    \

  26. D. V. Khveshchenko, Phys. Rev. B 86, 115115 (2012), arXiv:1205.4420.

    \

  27. S. Sachdev and J. Ye, Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030; S. Sachdev, Phys.Rev.Lett.105, 151602 (2010); Phys. Rev. D 84, 066009 (2011); Phys.Rev.X5, 041025 (2015); A. Kitaev, KITP seminars, 2015; arXiv:1711.08169; A. Kitaev and S. J. Suh, JHEP05(2018)183, arXiv:1711.08467;1808.07032; S.Sachdev, arXiv:2205.02285.

    \

  28. D. V. Khveshchenko, SciPost Phys. 5 012 (2018),arXiv:1705.03956; Condens. Matter 2018, 3(4), 40,arXiv:1805.00870; ibid 2020, 5, 37, arXiv:2004.06646.

    \

  29. Erez Berg et al, Annual Review of Condensed Matter Physics 2019 10,63,arXiv:1804.01988; Y. Schattner et al, Phys. Rev. X 6, 031028 (2016); S. Lederer et al, PNAS 114(19), 4905 (2017); X.Y.Xu et al, Phys. Rev. X 7, 031058 (2017); X.Y.Xu et al, npj Quantum Mater. 5, 65 (2020),arXiv:2003.11573; A.Klein et al, Phys. Rev. X 10, 031053 (2020),arXiv:2003.09431.

    \

  30. D.V.Khveshchenko, Lith.J.Phys.,55,208(2015), arXiv:1404.7000; ibid 56,125(2016),arXiv:1603.09741.

    \

  31. M.Mitrano et al, PNAS (2018), 21, 495; Romero-Bermudez J. et al, Phys. Rev. B 99, 235149 (2019); A.A.Husain et al, Phys. Rev. X 9, 041062 (2019); P. W. Phillips, N. E. Hussey, P. Abbamonte, Science, 377, 1-10 (2022); B. Michon et al, arXiv:2205.04030; E. van Heumen et al, Phys Rev B106, 054515 (2022); F. Balm et al, 2211.05492.

    \

  32. D. V. Khveshchenko, Lith.J.Phys.,59,104(2019), arXiv:1905.04381; ibid 60,185(2020),arXiv:1912.05691; ibid 62 2(2022),arXiv:2205.11478.

    \

  33. S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010),arXiv:0911.2898.

    \

  34. D. V. Khveshchenko, EPL 111 (2015) 1700, arXiv:1502.03375; Lith. J. of Phys. 61, 1 (2021), arXiv:2011.11617.

    \

  35. S.A. Hartnoll and A.Karch, Phys. Rev. B 91, 155126 (2015); A. Karch, K. Limtragool, P. W. Phillips, JHEP 2016, 175 (2016), arXiv:1511.02868; A. Amoretti and D. Musso, JHEP 1509 (2015) 094; A. Amoretti et al, Adv. in Phys. X, v.2, 409 (2017); Phys. Rev. Res 2, 023387 (2020).

    \

  36. A.A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019); Phys. Rev. B 98 125134 (2018); D. Miserev, J. Klinovaja, and D. Loss, Phys. Rev. B 103 075104 (2021); D. Chowdhury et al,arXiv:2109.05037; I. Esterlis et al,Phys. Rev. B 103, 235129; D. Chowdhury and E. Berg, Phys. Rev. Research 2 013301 (2020); P. Cha et al, Phys. Rev. Research 2 033434 (2020); H. Guo, Y. Gu, and S. Sachdev, Phys. Rev. B 100, 045140; A.A.Patel et al, arXiv:2203.04990; I. Esterlis et al, Phys. Rev. B 103, 235129 (2021), arXiv:2103.08615; D, Chowdhury et al, Reviews of Modern Physics 94, 035004 (2022), [arXiv:2109.05037]; A.A. Patel et al, arXiv:2203.04990; Wang, X., Chowdhury, D., arXiv:2209.05491; H. Guo et al, Phys. Rev. B 106, 115151 (2022).

    \

  37. G. T. Horowitz, J. E. Santos, and D. Tong, JHEP, 07 (2012) 168, arXiv:1204.0519; ibid 011 (2012) 102, arXiv:1209.1098.

    \

  38. A. Donos and J. P. Gauntlett, JHEP 04 (2014); 040; M. Rangamani, M. Rozali, and D. Smyth, ibid 07 (2015) 024; B. W. Langley, G. Vanacore, and P. W. Phillips, arXiv:1506.06769.

    \

  39. G. A. Inkof, K. Schalm, J. Schmalian, NPJ Quantum Materials volume 7, 56 (2022), arXiv:2108.11392; J.Schmalian, arXiv:2209.00474;

    \

  40. B. Meszena et al, Phys. Rev. B 94, 115134, arXiv:1602.05360; P.S¨aterskog, SciPost Phys. 10, 067 (2021), arXiv:2010.03077.

    \

  41. P. Nozieres, J. Phys. (Paris) 2, 443 (1992).

    \

  42. J. A. Hertz, Phys. Rev. B 14, 1165 (1976); A. J. Millis, Phys. Rev. B 45, 13047 (1992); Ar. Abanov, A. V. Chubukov, and J. Schmalian, Advances in Physics 52, 119 (2003), arXiv: cond-mat/0107421.

    \

  43. T.D.Son, Phys. Rev. X 5, 031027 (2015), arXiv:1502.03446; Prog. Theor. Exp. Phys. 2016, 12C103, arXiv:1608.05111; Annu. Rev. Condens. Matter Phys. 9, 397 (2018), arXiv:1805.04472.

    \

  44. D. V. Khveshchenko, Phys. Rev. B 75, 153405 (2007), arXiv:cond-mat/0607174.

    \

  45. H.Schulz, Phys.Rev.Lett.71, 1864 (1993).

    \

  46. W. Rantner and X-G. Wen, Phys. Rev. Lett. 86, 3871 (2001); J. Ye, Phys. Rev. Lett.87, 227003 (2001); M. Franz and Z. Tesanovic, Phys. Rev. Lett. 87, 257003 (2001).

    \

  47. D. V. Khveshchenko, Phys. Rev. Lett. 90, 199701 (2003), arXiv:cond-mat/0306079; ibid 91, 269701 (2003), arXiv:cond-mat/0306080; Phys. Rev. B 65, 235111 (2002), arXiv:cond-mat/0112202; Nucl. Phys. B642, 515 (2002, arXiv:cond-mat/0204040; arXiv:cond-mat/0205106; V. P. Gusynin, D.V. Khveshchenko, and M. Reenders, Phys. Rev. B 67, 115201 (2003), arXiv:cond-mat/0207372.

    \

  48. 5 E. Bagan, M. Lavelle and D. McMullan, Annals of Phys. 282, 471, 503 (2000).

    \

  49. D. V. Khveshchenko and A. G. Yashenkin, Phys. Lett. A, v.309, p.363 (2003), arXiv:cond-mat/0202173; Phys. Rev. B 67, 052502 (2003), arXiv:cond-mat/0204215;

    \

  50. D. V. Khveshchenko, Phys. Rev. B 75, 241406(R) (2007), arXiv:cond-mat/0611485; EPL, p.57008, v.82 (2008), arXiv:0705.4105.

    \

  51. D. V. Khveshchenko, EPL, 104, 47002 (2013), arXiv:1305.6651.

    \

  52. D. V. Khveshchenko, EPL, 109, 61001 (2015), arXiv:1411.1693.

    \

  53. D. V. Khveshchenko, Lith. J. of Phys., 61, 233, 2021, arXiv:2102.01617.

\

:::info Author:

(1) D. V. Khveshchenko, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

The Best Crypto Presale in 2025? Solana and ADA Struggle, but Lyno AI Surges With Growing Momentum

The Best Crypto Presale in 2025? Solana and ADA Struggle, but Lyno AI Surges With Growing Momentum

The post The Best Crypto Presale in 2025? Solana and ADA Struggle, but Lyno AI Surges With Growing Momentum appeared on BitcoinEthereumNews.com. With the development of 2025, certain large cryptocurrencies encounter continuous issues and a new player secures an impressive advantage. Solana is struggling with congestion, and the ADA of Cardano is still at a significantly lower level than its highest price. In the meantime, Lyno AI presale is gaining momentum, attracting a large number of investors. Solana Faces Setbacks Amid Market Pressure However, despite the hype surrounding ETFs, Solana fell by 7% to $ 203, due to the constant congestion problems that hamper its network functionality. This makes adoption slow and aggravates traders who want to get things done quickly. Recent upgrades should combat those issues but the competition is rising, and Solana continues to lag in terms of user adoption and ecosystem development. Cardano Struggles to Regain Momentum ADA, the token of a Cardano, costs 72% less than the 2021 high and is developing more slowly than Ethereum Layer 2 solutions. The adoption of the coin is not making any progress despite the good forecasts. Analysts believe that the road to regain the past heights is long before Cardano can go back, with more technological advancements getting more and more attention. Lyno AI’s Explosive Presale Growth In stark contrast, Lyno AI is currently in its Early Bird presale, in which tokens are sold at 0.05 per unit and have already sold 632,398 tokens and raised 31,462 dollars. The next stage price will be established at $0.055 and the final target will be at $0.10. Audited by Cyberscope , Lyno AI provides a cross-chain AI arbitrage platform that enables retail traders to compete with institutions. Its AI algorithms perform trades in 15+ blockchains in real time, opening profitable arbitrage opportunities to everyone. Those who make purchases above 100 dollars are also offered the possibility of winning in the 100K Lyno AI…
Share
BitcoinEthereumNews2025/09/18 18:22
Fed rate decision September 2025

Fed rate decision September 2025

The post Fed rate decision September 2025 appeared on BitcoinEthereumNews.com. WASHINGTON – The Federal Reserve on Wednesday approved a widely anticipated rate cut and signaled that two more are on the way before the end of the year as concerns intensified over the U.S. labor market. In an 11-to-1 vote signaling less dissent than Wall Street had anticipated, the Federal Open Market Committee lowered its benchmark overnight lending rate by a quarter percentage point. The decision puts the overnight funds rate in a range between 4.00%-4.25%. Newly-installed Governor Stephen Miran was the only policymaker voting against the quarter-point move, instead advocating for a half-point cut. Governors Michelle Bowman and Christopher Waller, looked at for possible additional dissents, both voted for the 25-basis point reduction. All were appointed by President Donald Trump, who has badgered the Fed all summer to cut not merely in its traditional quarter-point moves but to lower the fed funds rate quickly and aggressively. In the post-meeting statement, the committee again characterized economic activity as having “moderated” but added language saying that “job gains have slowed” and noted that inflation “has moved up and remains somewhat elevated.” Lower job growth and higher inflation are in conflict with the Fed’s twin goals of stable prices and full employment.  “Uncertainty about the economic outlook remains elevated” the Fed statement said. “The Committee is attentive to the risks to both sides of its dual mandate and judges that downside risks to employment have risen.” Markets showed mixed reaction to the developments, with the Dow Jones Industrial Average up more than 300 points but the S&P 500 and Nasdaq Composite posting losses. Treasury yields were modestly lower. At his post-meeting news conference, Fed Chair Jerome Powell echoed the concerns about the labor market. “The marked slowing in both the supply of and demand for workers is unusual in this less dynamic…
Share
BitcoinEthereumNews2025/09/18 02:44