This article introduces Decision Boundary-Aware Distillation, a novel method for Instance-Incremental Learning that preserves and extends the decision boundary using fused labels.This article introduces Decision Boundary-Aware Distillation, a novel method for Instance-Incremental Learning that preserves and extends the decision boundary using fused labels.

Optimizing SAGE Net: Achieving High Performance with Shorter Input Sequences for Online Inference

2025/11/06 00:00

Abstract and 1 Introduction

  1. Related works

  2. Problem setting

  3. Methodology

    4.1. Decision boundary-aware distillation

    4.2. Knowledge consolidation

  4. Experimental results and 5.1. Experiment Setup

    5.2. Comparison with SOTA methods

    5.3. Ablation study

  5. Conclusion and future work and References

    \

Supplementary Material

  1. Details of the theoretical analysis on KCEMA mechanism in IIL
  2. Algorithm overview
  3. Dataset details
  4. Implementation details
  5. Visualization of dusted input images
  6. More experimental results

4.1. Decision boundary-aware distillation

Decision boundary (DB) which reflects the inter-class relationship and intra-class distribution is one of the most valuable knowledge stored in a well-trained model. It can be defined by distinguishing between inner samples (correctly classified) and outer samples (misclassified), as illustrated in Fig. 2 (a). In new IIL, promoting the model’s performance on new data without forgetting equals to extend the existing DB to enclose those new outer samples while retain the DB in other locations. However, to learn from new data, existing methods take the annotated one-hot labels as the optimal learning target for granted. We argue that one-hot labels ignore the relationship between target class and other classes. Naively learning with one-hot labels tends to push outer samples towards the DB center, which can potentially interfere with the learning of other classes, especially when the data is insufficient to rectify such interference in IIL.

\ To address the inter-class interference, we propose to learn the new data by fusing annotated one-hot labels with predictions of existing model, as show in Eq. (1). For new outer samples, learning with fused labels retains the knowledge on none-target classes and extends the decision boundary more moderately to enclose them. Knowledge of nonetarget classes is crucial for retain learned knowledge, which also reported by Mittal et al. [18] in using super-class labels. For new inner samples, keeping the DB around it is a safer choice, i.e. using existing predicted scores as the learning target. However, we propose to push the DB away from the new peripheral inner samples by sharpening the teacher’s prediction score with the one-hot label, which in essence enlarges the inter-class distance while retaining the DB. Hence, although with different motivation, training on new outer samples and new inner samples are unified through the fused label.

\

\ Alternating the learning target with fused labels unifies the knowledge learning and retaining on new samples in a simple manner. Although this manner helps retain some learned knowledge, preservation of DB in other directions that only supported by the old data is not addressed.

\

\

\ Decision boundary-aware distillation enables the student network to learning new knowledge with awareness of the existing knowledge.

\

:::info Authors:

(1) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(2) Weifu Fu, Tencent Youtu Lab;

(3) Yuhuan Lin, Tencent Youtu Lab;

(4) Jialin Li, Tencent Youtu Lab;

(5) Yifeng Zhou, Tencent Youtu Lab;

(6) Yong Liu, Tencent Youtu Lab;

(7) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(8) Chengjie Wang, Tencent Youtu Lab.

:::


:::info This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Google's AP2 protocol has been released. Does encrypted AI still have a chance?

Following the MCP and A2A protocols, the AI Agent market has seen another blockbuster arrival: the Agent Payments Protocol (AP2), developed by Google. This will clearly further enhance AI Agents' autonomous multi-tasking capabilities, but the unfortunate reality is that it has little to do with web3AI. Let's take a closer look: What problem does AP2 solve? Simply put, the MCP protocol is like a universal hook, enabling AI agents to connect to various external tools and data sources; A2A is a team collaboration communication protocol that allows multiple AI agents to cooperate with each other to complete complex tasks; AP2 completes the last piece of the puzzle - payment capability. In other words, MCP opens up connectivity, A2A promotes collaboration efficiency, and AP2 achieves value exchange. The arrival of AP2 truly injects "soul" into the autonomous collaboration and task execution of Multi-Agents. Imagine AI Agents connecting Qunar, Meituan, and Didi to complete the booking of flights, hotels, and car rentals, but then getting stuck at the point of "self-payment." What's the point of all that multitasking? So, remember this: AP2 is an extension of MCP+A2A, solving the last mile problem of AI Agent automated execution. What are the technical highlights of AP2? The core innovation of AP2 is the Mandates mechanism, which is divided into real-time authorization mode and delegated authorization mode. Real-time authorization is easy to understand. The AI Agent finds the product and shows it to you. The operation can only be performed after the user signs. Delegated authorization requires the user to set rules in advance, such as only buying the iPhone 17 when the price drops to 5,000. The AI Agent monitors the trigger conditions and executes automatically. The implementation logic is cryptographically signed using Verifiable Credentials (VCs). Users can set complex commission conditions, including price ranges, time limits, and payment method priorities, forming a tamper-proof digital contract. Once signed, the AI Agent executes according to the conditions, with VCs ensuring auditability and security at every step. Of particular note is the "A2A x402" extension, a technical component developed by Google specifically for crypto payments, developed in collaboration with Coinbase and the Ethereum Foundation. This extension enables AI Agents to seamlessly process stablecoins, ETH, and other blockchain assets, supporting native payment scenarios within the Web3 ecosystem. What kind of imagination space can AP2 bring? After analyzing the technical principles, do you think that's it? Yes, in fact, the AP2 is boring when it is disassembled alone. Its real charm lies in connecting and opening up the "MCP+A2A+AP2" technology stack, completely opening up the complete link of AI Agent's autonomous analysis+execution+payment. From now on, AI Agents can open up many application scenarios. For example, AI Agents for stock investment and financial management can help us monitor the market 24/7 and conduct independent transactions. Enterprise procurement AI Agents can automatically replenish and renew without human intervention. AP2's complementary payment capabilities will further expand the penetration of the Agent-to-Agent economy into more scenarios. Google obviously understands that after the technical framework is established, the ecological implementation must be relied upon, so it has brought in more than 60 partners to develop it, almost covering the entire payment and business ecosystem. Interestingly, it also involves major Crypto players such as Ethereum, Coinbase, MetaMask, and Sui. Combined with the current trend of currency and stock integration, the imagination space has been doubled. Is web3 AI really dead? Not entirely. Google's AP2 looks complete, but it only achieves technical compatibility with Crypto payments. It can only be regarded as an extension of the traditional authorization framework and belongs to the category of automated execution. There is a "paradigm" difference between it and the autonomous asset management pursued by pure Crypto native solutions. The Crypto-native solutions under exploration are taking the "decentralized custody + on-chain verification" route, including AI Agent autonomous asset management, AI Agent autonomous transactions (DeFAI), AI Agent digital identity and on-chain reputation system (ERC-8004...), AI Agent on-chain governance DAO framework, AI Agent NPC and digital avatars, and many other interesting and fun directions. Ultimately, once users get used to AI Agent payments in traditional fields, their acceptance of AI Agents autonomously owning digital assets will also increase. And for those scenarios that AP2 cannot reach, such as anonymous transactions, censorship-resistant payments, and decentralized asset management, there will always be a time for crypto-native solutions to show their strength? The two are more likely to be complementary rather than competitive, but to be honest, the key technological advancements behind AI Agents currently all come from web2AI, and web3AI still needs to keep up the good work!
Share
PANews2025/09/18 07:00
Blockchain May Foster Network States Amid Eroding Nation-State Model

Blockchain May Foster Network States Amid Eroding Nation-State Model

The post Blockchain May Foster Network States Amid Eroding Nation-State Model appeared on BitcoinEthereumNews.com. COINOTAG recommends • Exchange signup 💹 Trade with pro tools Fast execution, robust charts, clean risk controls. 👉 Open account → COINOTAG recommends • Exchange signup 🚀 Smooth orders, clear control Advanced order types and market depth in one view. 👉 Create account → COINOTAG recommends • Exchange signup 📈 Clarity in volatile markets Plan entries & exits, manage positions with discipline. 👉 Sign up → COINOTAG recommends • Exchange signup ⚡ Speed, depth, reliability Execute confidently when timing matters. 👉 Open account → COINOTAG recommends • Exchange signup 🧭 A focused workflow for traders Alerts, watchlists, and a repeatable process. 👉 Get started → COINOTAG recommends • Exchange signup ✅ Data‑driven decisions Focus on process—not noise. 👉 Sign up → Network states represent sovereign communities in cyberspace, enabled by blockchain to challenge the 380-year-old nation-state model eroded by corporations and centralized powers. These digital entities use decentralized tools like DAOs and smart contracts for transparent governance, offering alternatives to traditional trust in opaque systems. Blockchain tools empower network states: Immutable ledgers, smart contracts, and privacy protocols allow borderless organization without relying on unelected officials. Resistance from established powers: Nation-states and corporations may use regulations or litigation to hinder emerging digital sovereignty models. Cypherpunk foundations: Built on ideals of decentralization, transparency, and privacy, network states align with cryptocurrency’s core ethos, fostering equal access across geographies. Discover how network states are reshaping governance through blockchain innovation. Explore crypto sovereignty’s role in post-nation-state futures and join the decentralized revolution today. (142 characters) What are network states? Network states are sovereign communities operating primarily in cyberspace, leveraging blockchain technology to govern themselves independently of traditional nation-states. Coined in discussions around crypto sovereignty, they enable individuals to form borderless societies using decentralized digital infrastructure. According to Jarrad Hope, author of “Farewell to Westphalia: Crypto…
Share
BitcoinEthereumNews2025/11/09 03:08