This article benchmarks the GPT-3.5 LLM on multi-hop reasoning datasets, finding that RECKONING's performance significantly surpasses both zero-shot and few-shot GPT-3.5 prompting.This article benchmarks the GPT-3.5 LLM on multi-hop reasoning datasets, finding that RECKONING's performance significantly surpasses both zero-shot and few-shot GPT-3.5 prompting.

The Strength of Dynamic Encoding: RECKONING Outperforms Zero-Shot GPT-3.5 in Distractor Robustness

2025/10/29 23:57

Abstract and 1. Introduction

  1. Background

  2. Method

  3. Experiments

    4.1 Multi-hop Reasoning Performance

    4.2 Reasoning with Distractors

    4.3 Generalization to Real-World knowledge

    4.4 Run-time Analysis

    4.5 Memorizing Knowledge

  4. Related Work

  5. Conclusion, Acknowledgements, and References

\ A. Dataset

B. In-context Reasoning with Distractors

C. Implementation Details

D. Adaptive Learning Rate

E. Experiments with Large Language Models

E Experiments with Large Language Models

\ Recently, Large Language Models (LLMs) with large parameter sizes learned from human preferences have shown remarkable performance in language understanding and generation. These LLMs are powerful zero-shot and few-shot reasoners. Recent works find that LLMs learn to perform multi-step reasoning by first generating new reasoning chains and then predicting the answers. In this experiment, we benchmark the performance of a popular new LLM, GPT-3.5, on the two multi-hop reasoning datasets we used in our paper. We first evaluate GPT-3.5’s zero-shot reasoning performance in predicting the correct answers. As Table 10 shows, zero-shot prompting GPT-3.5 significantly underperforms RECKONING’s performance. GPT-3.5’s performance improves on ProofWriter without distractors but still is behind the performance of RECKONING. When distractors are present in the context, RECKONING performs much better than zero-shot and few-shot GPT-3.5 prompting. This highlights RECKONING’s strength in disentangling irrelevant information from useful knowledge, an ability that even powerful LLMs like GPT-3.5 lack.

\

:::info Authors:

(1) Zeming Chen, EPFL (zeming.chen@epfl.ch);

(2) Gail Weiss, EPFL (antoine.bosselut@epfl.ch);

(3) Eric Mitchell, Stanford University (eric.mitchell@cs.stanford.edu)';

(4) Asli Celikyilmaz, Meta AI Research (aslic@meta.com);

(5) Antoine Bosselut, EPFL (antoine.bosselut@epfl.ch).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Clause de non-responsabilité : les articles republiés sur ce site proviennent de plateformes publiques et sont fournis à titre informatif uniquement. Ils ne reflètent pas nécessairement les opinions de MEXC. Tous les droits restent la propriété des auteurs d'origine. Si vous estimez qu'un contenu porte atteinte aux droits d'un tiers, veuillez contacter service@support.mexc.com pour demander sa suppression. MEXC ne garantit ni l'exactitude, ni l'exhaustivité, ni l'actualité des contenus, et décline toute responsabilité quant aux actions entreprises sur la base des informations fournies. Ces contenus ne constituent pas des conseils financiers, juridiques ou professionnels, et ne doivent pas être interprétés comme une recommandation ou une approbation de la part de MEXC.
Partager des idées